在保持HTML结构的情况下,将以下英文文本翻译为简体中文: 使用合成数据为苹果的CoreML皮肤病建议模型进行训练
Sure, here's the translated text in simplified Chinese within an HTML structure: ```html
DALL-E 展示了在快速开发新 AI 模型方面的巨大潜力。
```摘要
```html
以下论文探讨了使用苹果的CreateML框架生成CoreML模型,以便快速构思和实施一种建议性皮肤科模型,帮助痤疮患者了解其痤疮的严重程度,并推荐最佳治疗方案。在健康机器学习领域讨论的关键挑战之一是缺乏可用的众包数据,用于构建准确和全面的图像分类模型以建立皮肤科模型。
因此,我想探索利用生成式AI(特别是DALL-E图像生成模型)生成合成数据的可能性。该方法涉及开发一个简单的提示,其中包含模型变化的占位符输入,为模型提供开发多样数据集的目标,并设置稍后将使用数据的上下文。
这种方法显示出与DALL-E相关的巨大潜力,它呈现了痤疮、皮炎和酒渣鼻的一系列准确和代表性图像(这些选择是随机的)。所有数据均已标记,并使用CreateML应用程序在MacOS上应用了苹果的CoreML框架。测试数据来自Google研究实验室发布的SCIN数据集[来源]。
``` This HTML snippet translates the provided English text into simplified Chinese while maintaining the basic structure suitable for display on a web page.请注意:必须强调的是,这绝不意味着取代需要向具备资质的皮肤科医生咨询建议,而是旨在增强患者支持过程。
Sure, the translation of "Design of Prompt" into simplified Chinese while keeping the HTML structure intact would be: ```html 设计提示 ``` This HTML snippet preserves the structure while displaying the translated text in simplified Chinese.
```html
LLMs are often used to perform search requests by a lot of individuals, or to write code. One of the other ways it can be utilised is to use prompts with placeholders, to which the user can then specify the range of inputs to those placeholders. This is similar to designing a function in code where the output format is defined first (in this case an image), along with the inputs to the function. In this case, we need to develop a diverse dataset (e.g race, gender) with a range of severity markers (from none, through to mild, and severe). It’s also important in the case of acne to define the type, since it can vary between blackheads, whiteheads, cystic pustules, and more. The use case for this model is for a user to capture their daily progress on acne treatments, with the model then defining a marker of how severe the acne might be. This might help to build a timeline for the user of their acne progress and support dermatologists in understanding whether a patient is responding to the care prescribed.
``` Translated into Simplified Chinese: ```htmlLLMs经常被许多个人用来执行搜索请求,或编写代码。它的另一种用法是使用带有占位符的提示,用户可以指定这些占位符的输入范围。这类似于在代码中设计函数,其中首先定义输出格式(在本例中为图像),然后定义函数的输入。在这种情况下,我们需要开发一个多样化的数据集(例如种族、性别),其中包含一系列严重程度标记(从无到轻微,再到严重)。在痤疮情况下,定义类型也很重要,因为它可以是黑头、白头、囊性脓疱等多种类型。该模型的用例是用户捕获他们痤疮治疗的每日进展,然后模型定义痤疮可能有多严重的标记。这可能有助于为用户建立他们痤疮进展的时间表,并帮助皮肤科医生了解患者是否对处方的护理有所反应。
```To translate the given English text "As such, Figure 1 below shows the prompt that was used for the DALL-E image generation process." into simplified Chinese while keeping the HTML structure, you can use the following: ```html
因此,下图显示了用于DALL-E图像生成过程的提示。
``` In this HTML snippet: - `` and `
` are paragraph tags to structure the text. - "因此" translates to "As such". - "下图" translates to "Figure below". - "显示了" translates to "shows". - "用于" translates to "used for". - "DALL-E图像生成过程" translates to "DALL-E image generation process". - "的提示" translates to "the prompt". This maintains the HTML structure while providing the translated text in simplified Chinese.Sure, here is the translation of "Figure 1: DALL-E Prompt Designed for Generation of a diverse acne dataset" in simplified Chinese, while keeping the HTML structure: ```html ```
To showcase the outputs from this model, Figure 2 shows two examples, one on the left for moderate acne, and one on the right for very mild with a range of different acne types included within the image. ```html 展示该模型的输出,图2展示了两个例子,左边是中度痤疮,右边是非常轻微的痤疮,图像中包含多种不同类型的痤疮。 ```
Sure, here's the translated text in simplified Chinese: ```html ``` This HTML structure maintains the original formatting while providing the simplified Chinese translation.
Certainly! Here is the translated text in simplified Chinese, maintaining the HTML structure: ```html
需要注意的是,LLM决定了提示的输入,作为开发者,我并未定义这些输入。然而,目标是在提示中添加一条指导线,以鼓励LLM对数据集进行多样化,以最大化图像分类模型的性能。
``` This HTML snippet contains the translated text: "需要注意的是,LLM决定了提示的输入,作为开发者,我并未定义这些输入。然而,目标是在提示中添加一条指导线,以鼓励LLM对数据集进行多样化,以最大化图像分类模型的性能。"To translate "Output from DALL-E" to simplified Chinese while keeping the HTML structure, you would write: ```html 输出来自DALL-E ``` This HTML structure ensures that the text "输出来自DALL-E" is displayed as intended on a webpage, with the Chinese characters appearing correctly.
下一步,一旦生成了示例,就会大量生成图像,LLM被提示考虑更多条件,例如皮炎和酒渣鼻,而不仅仅是痤疮。更多示例如下图3所示。
Sure, here is the translated text in simplified Chinese: **图 3:包括痤疮、酒渣鼻和皮炎在内的所有输出示例。虽然一些输出看起来往往有些夸张,随着 DALL-E 技术的改进,这些输出可能会变得越来越精确。**
Sure, here's "Model Performance" translated into simplified Chinese while maintaining HTML structure: ```html 模型表现 ```
To translate the provided English text into simplified Chinese while keeping the HTML structure intact, you can use the following: ```html 从在CreateML中最初建立模型开始,模型的性能有所不同。对于一些图像,我们的准确率可以达到85%到100%,然而对于更复杂的情况,如酒渣鼻和皮炎,这两者在图像上往往看起来非常相似(例如红色分布和严重程度),模型似乎会混淆这两种情况。 ``` This HTML structure ensures that the translation is accurately represented and can be easily integrated into an HTML document or webpage.
在这个阶段重要的是提醒读者,这个模型的目的是提供建议。可以向模型的用户展示一系列建议性条件,并建议他们去皮肤科医生那里进行确诊。然而,如果患者已经了解他们的病情类型,那么模型可以简单地测量严重程度,以帮助用户记录他们的进展。
在保持HTML结构的情况下,将英文文本"Further examples of model performance to be shared later."翻译成简体中文: 稍后将分享更多模型表现的示例。
进一步工作
Sure, here's the translated text in simplified Chinese, keeping the HTML structure: ```html 这个合成数据集将继续生成,因为可以控制条件和严重程度。模型性能将被优化,并添加更多数据。 ``` This translation maintains the original meaning while adapting it for simplified Chinese.
Sure, here is the translated text in simplified Chinese while keeping the HTML structure intact: ```html
以下内容也可以完成:
```- 在保留HTML结构的情况下,将以下英文文本翻译为简体中文: 增加更多条件,进一步丰富数据集。
- ```html
使用真实世界数据和合成数据的组合,确保包括来自皮肤科医生的真实验证数据。
``` - 保持HTML结构,将以下英文文本翻译成简体中文: 请皮肤科医生评估合成数据并提供他们的诊断。
- 保持 HTML 结构,将以下英文文本翻译为简体中文: 使数据集开源化。
To translate "Conclusion" to simplified Chinese while keeping the HTML structure, you would use the following:
```html
结论
```
In this example:
- `` represents the HTML tag (assuming you're using a custom tag or attribute).
- `"结论"` is the translation of "Conclusion" into simplified Chinese characters.
Make sure to adjust the HTML tag according to your specific structure and context.
```html
使用苹果的CreateML框架,结合生成式AI模型如DALL-E的探索,展示了在开发暗示性皮肤病学模型方面的显著潜力。通过生成考虑了广泛皮肤病情况和严重程度的合成数据集,该研究解决了健康机器学习领域关键数据稀缺问题。当前模型显示出有希望的准确性,特别是对于较简单的病情,但其性能突出了进一步优化的必要性。生成的合成数据应通过真实世界数据进行增强,并由皮肤科医生验证,以提升模型可靠性。持续改进和开源数据集可以促进更全面和准确的工具,最终帮助患者和医疗专业人士管理皮肤病情。
```