Sure, here's the translated text in simplified Chinese: ``` ChatGPT 揭示了一场 Riverlands 耐力赛 ```

Sure, here's the translation: 切分和处理越野赛数据

Sure, here's the translated text: ```

上个周末,我参加了Riverlands越野赛,并收到了一张精美的地图 — 如图1所示。我是一位地图爱好者;我印象深刻。

```
Figure 1. Author’s photograph of the Riverlands map given out at this year’s race.

Sure, here's the translated text in simplified Chinese: ```html

我今年跑了大约60英里的路程,并使用GPS记录了我的进展。我从Strava获得了以GPX格式记录的转录。带着地图在脑海中,对比赛的记忆仍然清晰,我请求ChatGPT“剖析”关于我在缅因州野外度过的周末的各种图表。下面讨论了最有趣的一对图。

``` This HTML structure maintains the original text layout while providing the translation.

Sure, here is the translation in simplified Chinese while keeping the HTML structure: ```html

我使用了ChatGPT-4o和代码解释器来撰写这篇文章。

```

Sure, here's the translated text: ```html

开始时,我用我的GPX数据和一个请求启动了ChatGPT-4o,如图2所示。要求是三个图表:

```
  1. Sure, here's the translated text in simplified Chinese, while keeping the HTML structure: ```html 地图可视化 绘图 ```
  2. 一个纬度对齐的时间线
  3. 一个带有经度对齐的时间轴

在附录1中详细解释了提示的作用,还包括一个编码技巧。

Figure 2. Screen capture by the author. Prompting ChatGPT-4o to generate three plots of the GPX data.

以下是 ChatGPT 生成的图3中的图表所提供的代码。这段 Python 脚本在 ChatGPT 代码解释器中运行以生成这些图表。

import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import matplotlib.colors as mcolors
import gpxpy
from datetime import datetime
import numpy as np

# Parse the GPX file
gpx_file_path = '/mnt/data/Riverlands_100_2024.gpx'
with open(gpx_file_path, 'r') as file:
gpx = gpxpy.parse(file)

# Extract track points
data = []
for track in gpx.tracks:
for segment in track.segments:
for point in segment.points:
data.append([point.time, point.latitude, point.longitude, point.elevation])

# Create a DataFrame
df = pd.DataFrame(data, columns=['time', 'latitude', 'longitude', 'elevation'])

# Calculate elapsed time in seconds
df['elapsed_time'] = (df['time'] - df['time'].iloc[0]).dt.total_seconds()

# Calculate distances between points
df['distance'] = np.sqrt((df['latitude'].diff()**2) + (df['longitude'].diff()**2)) * 111000 # approximate conversion for latitude/longitude to meters
df['distance'].fillna(0, inplace=True)

# Calculate pace in MPH
df['time_diff'] = df['elapsed_time'].diff().fillna(0)
df['pace_mph'] = (df['distance'] / df['time_diff']) * 2.23694 # meters per second to miles per hour

# Normalize pace for color mapping (clip values at 6 MPH)
df['pace_mph_clipped'] = df['pace_mph'].clip(0, 6)

# Define color maps
time_cmap = plt.get_cmap('viridis')
pace_cmap = plt.get_cmap('coolwarm')

# Create color arrays for elapsed time and pace
time_norm = mcolors.Normalize(vmin=df['elapsed_time'].min(), vmax=df['elapsed_time'].max())
pace_norm = mcolors.Normalize(vmin=0, vmax=6)

time_colors = time_cmap(time_norm(df['elapsed_time']))
pace_colors = pace_cmap(pace_norm(df['pace_mph_clipped']))

# Plot the map visualization with elapsed time
fig, ax = plt.subplots(3, 1, figsize=(15, 15))

# Map visualization
ax[0].scatter(df['longitude'], df['latitude'], c=time_colors, s=10, label='Track Points')
ax[0].set_title('Map Visualization (Elapsed Time)')
ax[0].set_xlabel('Longitude')
ax[0].set_ylabel('Latitude')

# Time Progression with Latitude Alignment
scatter_lat = ax[1].scatter(df['elapsed_time'], df['latitude'], c=pace_colors, s=10, label='Track Points')
ax[1].set_title('Time Progression with Latitude Alignment')
ax[1].set_xlabel('Elapsed Time (s)')
ax[1].set_ylabel('Latitude')
fig.colorbar(scatter_lat, ax=ax[1], orientation='vertical', label='Pace (MPH)')

# Time Progression with Longitude Alignment
scatter_lon = ax[2].scatter(df['elapsed_time'], df['longitude'], c=pace_colors, s=10, label='Track Points')
ax[2].set_title('Time Progression with Longitude Alignment')
ax[2].set_xlabel('Elapsed Time (s)')
ax[2].set_ylabel('Longitude')
fig.colorbar(scatter_lon, ax=ax[2], orientation='vertical', label='Pace (MPH)')

plt.tight_layout()
plt.show()

Sure, here's the translated text in simplified Chinese: 请注意,ChatGPT 使用的上述代码并不尝试平滑其速度计算中的 GPS 抖动;这是另一种练习。影响是后续的速度数据应该以高层次的方式解释。

Figure 3. Screen capture by the author. Plots generated by ChatGPT in response to the prompt in Figure 2. The Latitude and Longitude alignment timelines are color coded by pace — red is faster, blue is slower. The right-hand side color bars are inaccurate — should be 0–6 mph.

Sure, here's the translation in simplified Chinese while keeping the HTML structure: ```html 讨论 ```

Sure, here's the translated text in simplified Chinese, while maintaining the HTML structure: ```html

一如既往,阅读ChatGPT结果时需要谨慎。通常,细节可能包含错误,并且在不同的会话之间会有所不同。例如,在此处描绘的会话中,颜色条被错误标记。尽管如此,如果你谨慎并且跨多个会话交叉比较结果(并且在途中改进提示等),你可以获得真正的见解。

```

Sure, here's the translated text in simplified Chinese while keeping the HTML structure: ```html 我发现图 3 的情节微妙而令人惊讶地丰富。 ```

Sure, here's the translated text in simplified Chinese: ```html

图3中的第一个图表(地图可视化)有效地传达了我的比赛结束情况。它展示了我在缅因州特纳的安德罗斯科根河地区州立公园的路线。绘制的路线是从覆盖两个半环(出发和返回)的数据构建的 — 沿着赛道。在第三个环节中,我在中途左转返回到“Middle Earth Aid Station”(请查看地图以获取其地理位置 — 图1),录音也在那里停止了。图5捕捉了这一动态。请参阅图4。

```
Figure 4. The author highlights the turn-around and the endpoint at the Middle Earth aid station (circle).

Sure, here's the translated text in simplified Chinese, keeping the HTML structure: ```html

图3中的底部两幅图(纬度对齐和经度对齐时间线)有效地传达了比赛最后三分之一的步伐下降,表现为蓝色编码段的增加。图表的内部结构具有信息性。我可以将蓝色段与地图(图1)或Strava(图6)中的位置相对应。

```

你可以参考图1中的地理位置信息“起点/终点”来查看我停留超过一个小时(因为胃部不适)的地方,如图5所示。其他以蓝色为主的部分对应我记得停下的地点和时间。我可以将这些部分与Strava中的位置进行比较,例如——参见图6,或者回到地图——图1,或者地图可视化——图3。

Figure 5. Screen capture by the author. Plots with highlight showing where the author stopped for over an hour at the Start/Finish during the race.

以下是对同一时间轴的不同视图的经纬度图。所示的步伐信息在两者之间相关 — 红色和蓝色沿时间轴对齐。然而,“重点”存在差异。例如,经度对齐图更详细地描述了红色和蓝色段(较快和较慢的步伐)。这是有道理的;总体上,路线在经度上比在纬度上覆盖的距离更长(想象一下路线投射到这些坐标轴上)。然而,并非所有位置都是如此。因此,在这两种视角之间,可以更全面地了解我在曲折崎岖的小径上的旅行结构。

Figure 6. Screen capture by the author. The Strava display of the route.

Sure, here's the translated text in simplified Chinese: ```html

如前所述,由ChatGPT计算的速度信息可能在细节上不太准确,但我相信在抽象层面上是有用的。例如,在图3和5中可能有更多的红色,但准确地说,我在比赛的前半段比在后半段跑得快。

```

总的来说,在ChatGPT中使用你的比赛数据是一项刺激的练习,可以揭示洞察力。这是一个很好的“假设”你比赛日经历的方式。然而,你应该谨慎解释ChatGPT告诉你的内容。

参考资料

```html

本文中使用的作者与ChatGPT的交流记录可以在以下链接找到(注意,ChatGPT目前不会分享代码解释器生成的图形数据):

```
  • I can't access external links, but you can copy the English text and paste it here, and I'll translate it to simplified Chinese for you while maintaining the HTML structure.
  • I can't access external content like the link you provided, but you can copy the English text here, and I'll translate it into simplified Chinese for you while keeping the HTML structure intact.
  • Sure, here's the translated text in simplified Chinese, while maintaining the HTML structure: ```html

    ChatGPT-4o — https://openai.com/index/gpt-4o-and-more-tools-to-chatgpt-free/

    ```
  • Sure, here is the translation of "Strava — https://www.strava.com/" in simplified Chinese within an HTML structure: ```html

    Strava — https://www.strava.com/

    ```
  • Sure, here's the translated text in simplified Chinese: ```html ```

附录1 — 在提示中使用编码提示

在Middlesex Fells Trail Analyzer Custom ChatGPT的“培训手册”中添加编码提示就像包含编码提示和代码示例一样。

Sure, here's the translated text in simplified Chinese within the HTML structure: ```html

它们指导ChatGPT的Python代码选择。在这种情况下,如果没有提示要做出改变,ChatGPT更有可能生成依赖于gpxpy模块的代码 —— 当它尝试在其代码解释器中运行脚本时会导致错误。

```
Figure 7. Screen capture by the author. ChatGPT’s Code Interpreter erroring from a missing gpxpy module.

以下是英文文本的简体中文翻译,保持HTML结构不变: ```html

虽然ChatGPT通常可以使用替代方法修复其代码(基于直接解析XML),但这会减慢响应速度。在极少数情况下,如果延迟很大,可能会结束会话。

```
Photo by the author. A view along the Riverlands race course.

2024-06-11 04:53:47 AI中文站翻译自原文